Biogenic Mn-Oxides in Subseafloor Basalts
نویسندگان
چکیده
منابع مشابه
Biogenic Mn-Oxides in Subseafloor Basalts
The deep biosphere of the subseafloor basalts is recognized as a major scientific frontier in disciplines like biology, geology, and oceanography. Recently, the presence of fungi in these environments has involved a change of view regarding diversity and ecology. Here, we describe fossilized fungal communities in vugs in subseafloor basalts from a depth of 936.65 metres below seafloor at the De...
متن کاملChromite oxidation by manganese oxides in subseafloor basalts and the presence of putative fossilized microorganisms
Chromite is a mineral with low solubility and is thus resistant to dissolution. The exception is when manganese oxides are available, since they are the only known naturally occurring oxidants for chromite. In the presence of Mn(IV) oxides, Cr(III) will oxidise to Cr(VI), which is more soluble than Cr(III), and thus easier to be removed. Here we report of chromite phenocrysts that are replaced ...
متن کاملNi(II) sorption on biogenic Mn-oxides with varying Mn octahedral layer structure.
Biogenic Mn-oxides (BioMnO(x)), produced by microorganisms, possess an extraordinary ability to sequester metals. BioMnO(x) are generally layered structures containing varying amounts of Mn(III) and vacant sites in the Mn layers. However the relationship between the varying structure of BioMnO(x) and metal sorption properties remains unclear. In this study, BioMnO(x) produced by Pseudomonas put...
متن کاملBiogenic Mn oxides for effective adsorption of Cd from aquatic environment.
Biogenic Mn oxides exert important controls on trace metal cycling in aquatic and soil environments. A Mn-oxidizing bacterium Bacillus sp. WH4 was isolated from Fe-Mn nodules of an agrudalf in central China. The biogenic Mn oxides formed by mediation of this Mn oxidizing microorganism were identified as short-ranged and nano-sized Mn oxides. Cd adsorption isotherms, pH effect on adsorption and ...
متن کاملDiversity of Mn oxides produced by Mn(II)-oxidizing fungi
Manganese (Mn) oxides are environmentally abundant, highly reactive mineral phases that mediate the biogeochemical cycling of nutrients, contaminants, carbon, and numerous other elements. Despite the belief that microorganisms (specifically bacteria and fungi) are responsible for the majority of Mn oxide formation in the environment, the impact of microbial spe cies, physiology, and growth sta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS ONE
سال: 2015
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0128863